Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract PremiseUnderstanding how population dynamics vary in space and time is critical for understanding the basic life history and conservation needs of a species, especially for narrow endemic species whose populations are often in similar environments and therefore at increased risk of extinction under climate change. Here, we investigated the spatial and temporal variation in population dynamics ofRanunculus austro‐oreganus, a perennial buttercup endemic to fragmented prairie habitat in one county in southern Oregon. MethodsWe performed demographic surveys of three populations ofR. austro‐oreganusover 4 years (2015–2018). We used size‐structured population models and life table response experiments to investigate vital rates driving spatiotemporal variation in population growth. ResultsOverall,R. austro‐oreganushad positive or stable stochastic population growth rates, though individual vital rates and overall population growth varied substantially among sites and years. All populations had their greatest growth in the same year, suggesting potential synchrony associated with climate conditions. Differences in survival contributed most to spatial variation in population growth, while differences in reproduction contributed most to temporal variation in population growth. ConclusionsPopulations of this extremely narrow endemic appear stable, with positive growth during our study window. These results suggest that populations ofR. austro‐oreganusare able to persist if their habitat is not eliminated by land‐use change. Nonetheless, its narrow distribution and synchronous population dynamics suggest the need for continued monitoring, particularly with ongoing habitat loss and climate change.more » « less
-
Climate warming threatens the persistence of a community of disturbance‐adapted native annual plantsAbstract With ongoing climate change, populations are expected to exhibit shifts in demographic performance that will alter where a species can persist. This presents unique challenges for managing plant populations and may require ongoing interventions, including in situ management or introduction into new locations. However, few studies have examined how climate change may affect plant demographic performance for a suite of species, or how effective management actions could be in mitigating climate change effects. Over the course of two experiments spanning 6 yr and four sites across a latitudinal gradient in the Pacific Northwest, United States, we manipulated temperature, precipitation, and disturbance intensity, and quantified effects on the demography of eight native annual prairie species. Each year we planted seeds and monitored germination, survival, and reproduction. We found that disturbance strongly influenced demographic performance and that seven of the eight species had increasingly poor performance with warmer conditions. Across species and sites, we observed 11% recruitment (the proportion of seeds planted that survived to reproduction) following high disturbance, but just 3.9% and 2.3% under intermediate and low disturbance, respectively. Moreover, mean seed production following high disturbance was often more than tenfold greater than under intermediate and low disturbance. Importantly, most species exhibited precipitous declines in their population growth rates (λ) under warmer‐than‐ambient experimental conditions and may require more frequent disturbance intervention to sustain populations.Aristida oligantha, a C4 grass, was the only species to have λ increase with warmer conditions. These results suggest that rising temperatures may cause many native annual plant species to decline, highlighting the urgency for adaptive management practices that facilitate their restoration or introduction to newly suitable locations. Frequent and intense disturbances are critical to reduce competitors and promote native annuals’ persistence, but even such efforts may prove futile under future climate regimes.more » « less
-
Abstract Predicting species' range shifts under future climate is a central goal of conservation ecology. Studying populations within and beyond multiple species' current ranges can help identify whether demographic responses to climate change exhibit directionality, indicative of range shifts, and whether responses are uniform across a suite of species.We quantified the demographic responses of six native perennial prairie species planted within and, for two species, beyond their northern range limits to a 3‐year experimental manipulation of temperature and precipitation at three sites spanning a latitudinal climate gradient in the Pacific Northwest, USA. We estimated population growth rates (λ) using integral projection models and tested for opposing responses to climate in different demographic vital rates (demographic compensation).Where species successfully established reproductive populations, warming negatively affectedλat sites within species' current ranges. Contrarily, warming and drought positively affectedλfor the two species planted beyond their northern range limits. Most species failed to establish a reproductive population at one or more sites within their current ranges, due to extremely low germination and seedling survival. We found little evidence of demographic compensation buffering populations to the climate treatments.Synthesis. These results support predictions across a suite of species that ranges will need to shift with climate change as populations within current ranges become increasingly vulnerable to decline. Species capable of dispersing beyond their leading edges may be more likely to persist, as our evidence suggests that projected changes in climate may benefit such populations. If species are unable to disperse to new habitat on their own, assisted migration may need to be considered to prevent the widespread loss of vulnerable species.more » « less
An official website of the United States government
